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Recently, two methods have been proposed for quantitatively
comparing NMR spectra of control and treated samples, in order to
examine the possible occurring variations in cell metabolism and/or
structure in response to numerous physical, chemical, and biologi-
cal agents. These methods are the maximum superposition normal-
ization algorithm (MaSNAl) and the minimum rank normalization
algorithm (MiRaNAl). In this paper a new subspace-based time-
domain normalization algorithm, denoted by SuTdNAl (subspace
time-domain normalization algorithm), is presented. By the deter-
mination of the intersection of the column spaces of two Hankel
matrices, the common signal poles and further on the components
having proportionally varying amplitudes are detected. The method
has the advantage that it is computationally less intensive than the
MaSNAl and the MiRaNAl. Furthermore, no approximate estimate
of the normalization factor is required. The algorithm was tested by
Monte Carlo simulations on a set of simulation signals. It was shown
that the SuTdNAl has a statistical performance similar to that of
the MiRaNAl, which itself is an improvement over the MaSNAl.
Furthermore, two samples of known contents are compared with
the MiRaNAl, the SuTdNAl, and an older method using a standard.
Finally, the SuTdNAl is tested on a realistic simulation example de-
rived from an in vitro measurement on cells. C© 2002 Elsevier Science (USA)
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1. INTRODUCTION

NMR spectroscopy is increasingly being used, both in vitro
and in vivo, to examine variations induced by physical, chemical,
or biological agents which have acted on a sample or on a patient.
In this type of studies, in order to obtain relative quantitative in-
formation, a comparison between signal intensities of control
samples and treated or exposed samples is often conducted. The
problem that arises in such comparisons is that the concentra-
tions of cells in control and treated samples will be different, thus
leading to a change of spectral intensities of metabolites even
1 To whom correspondence should be addressed. Fax: +32-16-321970.
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when the concentration of those metabolites on the cellular level
has not changed.

To overcome this problem various methods have been devel-
oped. An example is the use of reference compounds. For exam-
ple, in in vitro studies, synthetic, such as 3-trimethylsilyl[2,2,3,3-
d4]propionate (8, 2), or naturally occurring, such as glucose
in 13C spectra (11), reference compounds have been used. In
addition, in both in vivo and in vitro studies, enzymatic de-
termination of the concentration of a metabolite present in the
samples, as well as the assumption that the concentration of a
particular metabolite (e.g., the alanine methyl doublet or the cre-
atine singlet) does not change, has also been utilized (3, 1). In
particular, a common method of normalization of spectra is to
divide each spectral intensity by either the sum of intensities or
the square root of the sum of squares of intensities of metabolites
whose concentrations are supposed not to change (6).

Recently two new methods, which are not based on the ad-
dition of external substances of known concentration, on the
indirect measurement of internal substances, or on an assump-
tion about the concentration of particular substances, have been
proposed: the maximum superposition normalization algorithm
(MaSNAl) (9) and the minimum rank normalization algorithm
(MiRaNAl) (10). In this paper a new algorithm, the subspace-
based time-domain normalization algorithm (SuTdNAl), is pro-
posed for quantitatively comparing NMR spectra. It is based on
the determination of the intersection of the column spaces of two
Hankel matrices. The next section introduces the problem set-
ting, followed by a description of the algorithm. The algorithm
is tested by Monte Carlo simulations applied to a simulation ex-
ample. It is demonstrated that, like the MiRaNAl, the SuTdNAl
is able to determine the normalization factor with very low bias,
both in spectra with a low signal-to-noise ratio and in cases in
which great changes are induced by the treatment (degree of
diversity >50%). Furthermore it is demonstrated that the vari-
ance of the estimated normalization factors obtained with the
SuTdNAl and the MiRaNAl are similar. The advantage of the
new algorithm over the MiRaNAl is the increased computational
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efficiency and the fact that no initial estimate of the normaliza-
tion factor is required. Furthermore, two samples of known con-
tents are compared with MiRaNAl, with SuTdNAl, and with an
older method using a standard. Finally, the SuTdNAl is tested
on a realistic simulation example derived from an in vitro mea-
surement on cells.

In the remainder of the paper we will adopt a Matlab-like
notation for vectors and matrices:

• A(p, q): the entry in the qth column of the pth row of A.
• A(p, :): the pth row of A.
• A(:, q): the qth column of A.
• A(p : q, r : s): the (q − p + 1)× (s − r +1) submatrix of A

containing the entries that belong to rows p to q and to columns
r to s.

• b(p): the entry on the pth row of column vector b.
• b(p : q): the (q − p + 1) × 1 subvector of b containing the

entries of row p till row q .
• b(q : −1 : p): this vector is equal to the previous one but

with the elements in reversed order.

Furthermore i = √−1.

2. RESULTS AND DISCUSSION

2.1. The Algorithm

A time-domain NMR-free induction decay (FID) experiment
can be modeled as a sum of complex damped exponentials,

x(n) =
s=S∑
s=1

A(s)ei φ̃(s)e(−α(s)+i2πν(s))t(n) + e(n),

n = 0, . . . , N − 1, [1]

where S is the number of complex damped exponentials,
A ∈ R

S×1 contains the amplitudes, α ∈ R
S×1 contains the damp-

ing factors, ν ∈ R
S×1 contains the frequencies (in Hz) and

φ̃ ∈ R
S×1, φ̃(s) = φ(s) + φ0, s = 1, . . . , S, where φ(s) is defined

as the phase of the sth component and φ0 is the zero-order phase.
Furthermore, e(n) is complex white Gaussian noise. The num-
ber of complex data points is represented by N . The discretely
sampled time steps are t(n) = (n + η)
t , with t(0) = η
t the
begin time or dead time of the spectrometer and 
t the sampling
interval. The phases φ(s), required only under particular exper-
imental conditions, can usually be set equal to zero, as will be
assumed in the remainder of the paper. Another way of writing
Eq. [1] is as

x(n) =
S∑

s=1

c(s)z(s)(n+η), n = 0, . . . , N − 1,

[2]
with c(s) ≡ A(s)ei φ̃(s) and z(s) ≡ e(−α(s)+i2πν(s))
t ,
where c(s), s = 1, . . . , S, are the so-called complex amplitudes
and z(s), s = 1, . . . , S, are the so-called signal poles. Now we
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consider 2 FIDs x1(n) and x2(n) with

x1(n) =
s=S1∑
s=1

A1(s)ei(φ̃1(s))e(−α1(s)+i2πν1(s))t(n) [3]

x2(n) =
s=S2∑
s=1

A2(s)ei(φ̃2(s))e(−α2(s)+i2πν2(s))t(n), [4]

where the different quantities are defined in a way similar to that
in Eq. [1].

What basically happens in the SuTdNAl is a time-domain
fit of the FIDs x1 and x2 using the proposed model func-
tion of complex damped exponentials. A naive implementa-
tion would be to determine first the parameters of the model
function for FID x1 and then for FID x2. The result would be
two sets of parameters: A1(s), α1(s), ν1(s), φ̃1(s), s = 1, . . . , S1,
and A2(s), α2(s), ν2(s), φ̃2(s), s = 1, . . . , S2. The next step in the
procedure would then be looking for common signal poles, i.e.,
components for which −α1(p) + i2πν1(p) ≡ z1(p) = z2(q) ≡
−α2(q) + i2πν2(q) for some p and q. The reason for looking
for common signal poles is obvious: only signal poles represent-
ing metabolites that are present in signal x1(n) (obtained from
the control sample) as well as in signal x2(n) (obtained from
the treated sample) can give rise to proportional changes in their
corresponding spectral intensities, i.e., amplitudes A1(s), A2(s).
In a typical experiment a majority of the spectral intensities of
the Sc common signal poles scale with a factor R (the latter of
course corresponds to the normalization factor that will be com-
puted), whereas the signal poles whose corresponding spectral
intensities do not scale with this factor R belong to metabolites
whose concentration on the cellular level has been changed by a
particular physical, chemical, or biological agent. It is clear that
the above described straightforward approach works perfectly
for noiseless signals x1 and x2. However, in real-life experiments
signals x1 and x2 are contaminated by complex white Gaussian
noise e1 and e2 and only x1n and x2n are observed:

x1n(n) = x1(n) + e1(n) and x2n(n) = x2(n) + e2(n).

Furthermore, the involved signal poles can lie very close to each
other. In such circumstances it will be extremely difficult—if
not impossible—to detect common signal poles, i.e., determine
which signal pole of x1n corresponds to which signal pole of
x2n . A more advanced technique is called for in the noisy case
and will be described in the next paragraph.

To explain the SuTdNAl we start again from the noiseless
case. The algorithm starts by stacking x1 and x2 in L×M Hankel
matrices H1 and H2,

H1 ≡




x1(0) x1(1) . . . x1(M − 1)

x1(1) x1(2) . . . x1(M)
. . . .



. . . .
x1(L − 1) x1(L) . . . x1(N − 1)
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and

H2 ≡




x2(0) x2(1) . . . x2(M − 1)

x2(1) x2(2) . . . x2(M)
...

...
...

...
x2(L − 1) x2(L) . . . x2(N − 1)


 ,

with M chosen greater than S1 and S2 and subject to the con-
straint N = M + L −1. Before we proceed with the explanation
of the procedure to find the common signal poles, it is useful
to clarify the link that exists between the representation (see
Eq. [2]) of a signal consisting of a sum of complex damped ex-
ponentials, such as x1, and the Hankel matrix built from that
signal, namely H1. The relationship is expressed by the Vander-
monde decomposition of the Hankel matrix:

H1 = O1 D1CT
1 [5]

with

O1 ≡




1 1 . . . 1
z1(1) z1(2) . . . z1(S1)

...
...

...
...

z1(1)L−1 z1(2)L−1 . . . z1(S1)L−1


 ,

D1 ≡




c1(1) 0 . . . 0

0 c1(2) . . . 0
...

...
...

...
0 0 . . . c1(S1)




and

C1 ≡




1 1 . . . 1
z1(1) z1(2) . . . z1(S1)

...
...

...
...

z1(1)M−1 z1(2)M−1 . . . z1(S1)M−1


 .

From the latter equations, it follows that the column space
of the matrix H1 is determined by the vectors v1k ≡
[1 z1(k) z1(k)2 . . . z1(k)L−1]T , k = 1, . . . , S1. Therefore if the
signals x1 and x2 have Sc signal poles in common, the corre-
sponding vectors v1 j , j = 1, . . . , Sc form a basis for the inter-
section of the column spaces of H1 and H2.2 Therefore, to find the
common signal poles first the intersection of the column spaces

of H1 and H2 is determined and next the signal poles can be ex-
tracted from this common subspace. Finding the intersection of

2 It can easily be proven that no vector other than the signal vectors coming
from common signal poles lie in the common subspace. The proof relies entirely
on the fact that a matrix like O1 (see Eq. [5]) cannot be rank-deficient if the signal
poles are distinct.
G ET AL.

the column spaces of H1 and H2 can easily be done as follows,

H1 X = H2Y,

[H1 H2]

[
X

−Y

]
= 0,

and next use the Singular Value Decomposition (SVD) of
[H1 H2] = UexSexV H

ex to find X and Y :

X = Vex(1 : M, S1 + S2 − Sc + 1 : 2M)
[6]

Y = −Vex(M + 1 : 2M, S1 + S2 − Sc + 1 : 2M).

Note that the column space of the matrix Hc ≡ H1 X = H2Y is
the intersection of the column spaces of H1 and H2.

Due to the shift-invariant structure of the matrix Hc it is now
straightforward (see Appendix A) to determine the common
signal poles z1(k) = z2(k), k = 1, . . . , Sc. Note that the previous
operation is represented by the function “common sp” in the
algorithmic outline of the SuTdNAl at the end of this section
(i.e., at line 2).

Once the common poles are calculated, the remaining poles
in x1 and x2 are determined. Note that at this point, the situ-
ation corresponds to the case in which we have some a priori
known signal poles (in this case these are the now available
common signal poles) and we have to determine the remain-
ing poles (5, 4). As shown in (5, 4) and briefly summarized in
Appendix B, the remaining signal poles can easily be deter-
mined, by projecting the row spaces of H1 and H2 onto the or-
thogonal complement of the subspace spanned by the common
signal poles and their powers. This projection allows the com-
putation of the remaining signal poles z1(k), k = Sc + 1, . . . , S1

of x1 (note that the latter operation is represented by the function
“diff sp” in the algorithmic outline of the SuTdNAl at the end
of this section (i.e., at line 3)) and the remaining signal poles
z2(k), k = Sc + 1, . . . , S2 of x2 (note that the latter operation is
represented by the function “diff sp” in the algorithmic outline
of the SuTdNAl at the end of this section (i.e., at line 4)). Using
the determined signal poles and the model function Eq. [3], it is
straightforward to find the amplitudes A1(k), k = 1, . . . , S1 and
phases φ̃1(k), k = 1, . . . , S1 of x1, simply by solving the follow-
ing set of equations:

L1c1 = x1 [7]

with

L1 ≡




1 1 . . . 1
z1(1) z1(2) . . . z1(S1)

...
...

...
...

z1(1)N−1 z1(2)N−1 . . . z1(S1)N−1


 .
Note that the latter operation is represented by the function
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“ca” in the algorithmic outline of the SuTdNAl at the end of
this section (i.e., at line 5). In a similar way, the amplitudes
A2(k), k = 1, . . . , S2, and phases φ̃2(i), k = 1, . . . , S2, of x2 are
found (note that the latter operation is represented by the func-
tion “ca” in the algorithmic outline of the SuTdNAl at the end
of this section (i.e., at line 6)).

Let us now consider what changes when the above described
subspace procedure is applied to the observed noisy signals
x1n and x2n instead of to the noiseless signals x1 and x2. Ob-
viously Eq. [5] is no longer satisfied exactly, for the simple
reason that H1 no longer has rank S1. Nevertheless it is still
possible to determine an estimate of the common subspace and
thus an estimate of the common signal poles. To be more spe-
cific, in Appendix A, the noisy signals lead to an inconsistent
set of equations [14] that will be solved in a Total Least Squares
(TLS) sense (13). As in the noiseless case, the determination
of the “uncommon” signal poles leads to a system of equa-
tions described by Eq. [20]. However, in the noisy case the lat-
ter system of equations is inconsistent and will be solved in a
TLS sense. Finally, the set of equations [7]—used for the de-
termination of the complex amplitudes—becomes inconsistent
in the noisy case and will be solved in a Least Squares (LS)
sense.

In order to understand the following procedure, it should be
reminded that the Sc components with common signal poles
can be divided into two sets. As mentioned at the beginning
of this section, the spectral intensities (i.e., the amplitudes in
A1 and A2) of the first set, which contains Sp components, will
present proportional changes due to different cell concentrations
while the spectral intensities of the second set, which contains
Sc − Sp components, will present nonproportional changes,
which can most likely be attributed to the effects of a partic-
ular agent. If the signal intensities of the Sc common signal
poles are considered, the vector r ≡ A2(1 : Sc, 1)./A1(1 : Sc, 1),
where “./” represents the pointwise division of two vectors,
contains the ratios of the signal intensities. If the measure-
ments would be noiseless, the normalization factor would occur
several times as an entry of the vector r . However, if noisy
measurements are considered, all entries of r will be differ-
ent. Therefore the entries of r will be divided into classes,
where membership of a class is determined by the closeness
to the other members. The class with the largest number of
members will then determine the normalization factor by tak-
ing the average of the different ratios of the members. There-
fore, in order to find the correct normalization factor we pro-
ceed in the following way (note that the following operation
is represented by the function “findfactor” in the algorithmic
outline of the SuTdNAl at the end of this section (i.e., at
line 7)). Set r ≡ A2(1 : Sc, 1)./A1(1 : Sc, 1), where “./” rep-
resents the pointwise division of two vectors. Next, the first

entry r (1) is assigned to class 1, Next, we check if r (2) lies
close to r (1) by evaluating ‖r (2) − r (1)‖/r (1) < 0.1.3 If this

3 Note that 0.1 is a user-defined tolerance.
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is true, the second entry r (2) is assigned to class 1 as well.
If r (2) is not close to r (1), a new class, class 2 is created
and the second entry of r is assigned to the latter class, . . . .
In the end (i.e., when all entries of r have been considered)
the class with the largest number of members determines the
normalization factor, simply by taking the mean of the ele-
ments r (i) that belong to the largest class. The entire procedure
can be described in the following schematic way [SuTdNAl(S1,

S2, Sc)]:

1. begin
2. (α1,2(s), ν1,2(s), s = 1, . . . , Sc):=

common sp(x1, x2);
/∗compute the common signal poles of x1 and x2

∗/
3. (α1(s), ν1(s), s = Sc + 1, . . . , S1):=

diff sp(x1, S1, α1(s), ν1(s), s = 1, . . . , Sc)
/∗compute the remaining signal poles of x1

∗/
4. (α2(s), ν2(s), s = Sc + 1, . . . , S2):=

diff sp(x2, S2, α2(s), ν2(s), s = 1, . . . , Sc)
/∗compute the remaining signal poles of x2

∗/
5. (A1(s), φ̃1(s), s = 1, . . . , S1):=

ca(x1, α1(s), ν1(s), s = 1, . . . , S1)
/∗compute the complex amplitudes of x1

∗/
6. (A2(s), φ̃2(s), s = 1, . . . , S2):=

ca(x2, α2(s), ν2(s), s = 1, . . . , S2)
/∗compute the complex amplitudes of x2

∗/
7. Rest :=findfactor(A1(s), A2(s), s = 1, . . . , Sc)

/∗determine the normalization factor∗/
8. end.

2.2. Experimental Results

In this section the performance of the SuTdNAl is analyzed.
The SuTdNAl calculates an estimate Rest for the normalization
factor. As a performance measure of SuTdNAl the absolute per-
cent bias (bias) and the variance (var) are calculated,

bias(Rest) ≡ 100|E[Rest] − R|/R

var(Rest) ≡ E[(Rest − E[Rest])
2],

where E[.] represents the expectation operator.
In order to compare similar spectra we define two proper-

ties of spectra: the degree of diversity (Dod) and the signal to
noise ratio (SNR). The degree of diversity of two spectra is de-
fined as the percent ratio between the number of points that are
not superimposed and the total number of spectral points, when
the two spectra are correctly normalized. In practice, for these
simulation examples, the degree of diversity is calculated as fol-
lows. First the FIDs are zero-padded to 32,768 points and then
Fourier transformed. Next the noise level of x1n is estimated by
calculating the standard deviation σ1 of the last 1001 points of
f1n , the real part of the Fourier transform of the zero-padded

FID x1n . In a similar way σ2 is determined on the basis of f2n ,
the real part of the Fourier transform of x2n . Next the signal d is



I
194 LEMMERL

calculated:

d = |x2n − Rx1n|.

The percentage of points for which d > σ1+σ2 is then the degree
of diversity (Dod).

Furthermore, the SNR is calculated as follows:

SNR = min(max( f1n)/σ1, max( f2n)/σ2).

In the first section we compare the statistical performance of the
SuTdNAl to the statistical performance of the MiRaNAl. The
following section elaborates on the computational efficiency of
the SuTdNAl compared to the MiRaNAl. Since it is hard to es-
timate the necessary model orders, we investigate in a separate
subsection the dependence of the result of the algorithm on the
chosen model orders. Next, the new method is tested by compar-
ing spectra of two samples of known contents using the SuTd-
NAl, the MiRaNAl and an older method using a standard. The
latter example allows to determine how SuTdNAl performs on
measured signals under realistic noise conditions. The example
is rather simple in the sense that it contains only one metabo-
lite of which the intensities change proportionally. Considering
an experiment in which more than just one of the metabolites
has proportionally changing amplitudes would complicate the
assessment of the performance of the algorithm since part of the
bad performance might be due to the fact that it is very hard to
make all the ratios experimentally exactly the same. Therefore
the last subsection describes a simulation example derived from
an in vitro measurement on cells.

2.2.1. Comparison of Statistical Performance

Since the MiRaNAl statistically outperforms the MaSNAl
only the former algorithm is involved in this comparison.
For several simulation signals, Monte Carlo simulations with
different noise levels consisting of 30 runs each, were per-
formed, yielding spectra with different SNRs and Dods. In
Figs. 1 and 2 the results are summarized for spectra with
Dod ≈ 59%. Figure 1 shows the absolute percent bias of the
results obtained by the MiRaNAl4 (circles) and the SuTdNAl
(triangles), whereas Fig. 2 shows the variance of the re-
sults obtained by the MiRaNAl (circles) and the SuTdNAl
(triangles). In terms of absolute percent bias, the MiRaNAl
and the SuTdNAl have a similar performance. Furthermore,
the variance of the estimates obtained with the SuTdNAl is
similar to the variance of the estimates obtained with the
MiRaNAl.

2.2.2. Comparison of Computational Performance
A first difference observed upon comparing the computational
efficiency of the MiRaNAl and the SuTdNAl is the fact that the

4 These results correspond to the results shown in Fig. 5 of (10).
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FIG. 1. This figure illustrates the absolute percent bias versus the SNR
(mean degree of diversity = (59 ± 3)%).

MiRaNAl is an iterative method as opposed to the SuTdNAl.
This is a consequence of the fact that the MiRaNAl determines
the optimal normalization factor R by calculating the singular
value spectra of several �N/2� × (N − �N/2� + 1) matrices
(where �.� rounds to the nearest integer towards +∞), i.e., ma-
trices obtained for different values of the normalization factor
R. The normalization factor R that results in the matrix with the
lowest numerical rank is the solution obtained by the MiRaNAl.
FIG. 2. This figure illustrates the variance versus the SNR (mean degree of
diversity = (59 ± 3)%).
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TABLE 1
Computationally Most Important Parts

Matrix size Line no. in
(L = �N/2�, M = N − L + 1) Formula SuTdNAl

L × 2M Eq. [6] 2
L × (2M − S1 − S2 + Sc) Eq. [11] 2
L × (M − Sc) Eq. [18] 3
L × (M − Sc) Eq. [18] 4

The latter implies that

1. A good starting value for R has to be available and
2. Depending on the required accuracy of R, many SVD cal-

culations are necessary.

As far as the SuTdNAl is concerned, most of the computational
effort is related to the calculation of four SVDs. In Table 1
an overview is given of these SVDs, indicating the size of the
involved matrices, the corresponding formula in this paper as
well as the corresponding line in the algorithm description of
the SuTdNAl in Section 2.

2.2.3. Influence of Model Orders on Performance of SuTdNAl

As can be deduced from the algorithm outline in one of the
previous subsections, the model orders S1, S2 and Sc have to
be provided by the user. Furthermore, with closely spaced sig-
nal poles it is extremely difficult to determine these numbers
exactly from the noisy measurements x1n and x2n . Therefore
the influence of the choice of (S1, S2, Sc) on the performance
of the SuTdNAl is studied in this section, using two simulated
1 H NMR FIDs starting from the model function in Eq. [3],
Eq. [4], N = 128, 
t = 0.000125, η1 = 0.00030, η2 = 0.00035,
φ01 = 0.54, φ02 = 0.35, and the parameters in Table 2. For each
noise level, 30 independent Gaussian noise realizations with
standard deviation σn are constructed for signal x1n and x2n . As
can be derived from Table 2, the normalization factor R = 2.

The results are summarized in Table 3. It is clear that over-
estimating the model orders by even more than 20% still yields
low absolute percent biases, while the variance does not change
considerably.

2.2.4. Comparison of Two Measured Spectra

In order to test the SuTdNAl experimentally, two samples
of known contents were compared. Both samples contained
thyrotropin-releasing factor (THR, Calbiochem, MW 362.4),
deuterated methanol (CD3OD 99.96%, Cambridge Isotope
Laboratories), and sodium trimethylsilyl[2,2,3,3-d4]propionate
(TSP, 10 µmol/ml). The first sample (sample A) consisted of
4.5 mg of THR, 400 µl of CD3OD, and 10 µl of TSP, while the
second sample (sample B) consisted of 4.5 mg of THR, 600 µl
of CD OD, and 10 µl of TSP.
3

Five 1 H NMR spectra were obtained, for each sample, using
a Bruker DPX digital spectrometer operating at 300 MHz. The
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spectra were accumulated with a 90◦ flip angle pulse and 64
transients of 8K data points corresponding to a spectral window
of ±2097.3 Hz. The magnitude spectra of sample A and B are
shown in Fig. 3.

A normalization algorithm allows, after normalization of the
spectra, to obtain directly the correct percent differences of the
non proportional signals. For example, let us suppose we want
to obtain the percent difference (�CD3OD(%)) of CD3OD rela-
tive to THR. Using the traditional method, i.e., measuring the
concentrations of both THR and CD3OD, in both spectra with
respect to TSP, the results in Table 4 were obtained (10, 9).
If the percent difference (�CD3OD(%)) of CD3OD relative to
THR of the sample A spectrum with respect to the sample B
spectrum is to be computed, the following equation can be
used,

�CD3OD(%) = 100
CD3OD(A) − CD3OD(B)

THR(B) THR(A)
CD3OD(B)

THR(B) THR(A)
[8]

where CD3OD(A) is the CD3OD concentration in spectrum A
and the other symbols have similar meaning. In fact, �CD3OD(%)
is the difference in CD3OD relative to THR concentration.
The CD3OD concentrations are proportional to those ob-
tained by considering the CD3OD residual peaks due to resid-
ual protons (7); thus, the concentrations obtained by the
CD3OD residual peaks in Table 4 can be used directly in
Eq. [8]. By Eq. [8], using the concentrations in Table 4, ob-
tained by the traditional TSP standard quantification (traditional
method), a �CD3OD(%) = (−39.4 ± 8.7)% percent difference

TABLE 2
FID1 and FID2 Parameters

i A1 (i) A2 (i) α1 (i) α2 (i) ν1 (i) ν2 (i)

1 17 34 369 369 −3500 −3500
2 10 20 327 327 −3450 −3450
3 40 80 177 177 −3335 −3335
4 36 72 913 913 −3150 −3150
5 30 60 123 123 −3100 −3100
6 15 30 651 651 −3000 −3000
7 20 40 236 236 −2900 −2900
8 12 24 950 950 −2750 −2750
9 25 50 139 139 −2000 −2000

10 33 66 210 210 −1500 −1500
11 35 70 178 178 1600 1600
12 15 30 555 555 1800 1800
13 23 46 710 710 2100 2100
14 35 70 275 275 2400 2400
15 22 44 345 345 2700 2700
16 35 70 455 455 2850 2850
17 39 78 700 700 3000 3000
18 27 54 825 825 3020 3020

19 35 15 765 865 3100 2900
20 14 50 455 555 3500 3400
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TABLE 3
Influence of Model Orders S1, S2, Sc (Exact Model Orders are S1 = 20, S2 = 20, Sc = 18)

(S1, S2, Sc)= (20,20,18) (22, 22, 18) (24, 24, 22) (24, 24, 20) (26, 26, 20) (26, 26, 24)

σn = 0.6, SNR = 419.57, Dod = 68.49% bias 0.21% 0.22% 0.09% 0.58% 0.45% 0.07%
variance 3.91e-04 2.91e-04 4.60e-04 8.60e-04 6.12e-04 5.32e-04

σn = 0.8, SNR = 261.59, Dod = 59.27% bias 0.11% 0.33% 0.20% 0.55% 0.33% 0.25%
variance 2.62e-04 8.28e-04 9.75e-04 7.43e-04 5.27e-04 1.10e-03

σn = 1.2, SNR = 151.00, Dod = 53.80% bias 0.18% 0.49% 0.67% 0.58% 0.79% 0.16%
variance 7.10e-04 8.86e-04 2.34e-03 7.88e-04 2.08e-03 1.19e-03

σn = 1.4, SNR = 169.09, Dod = 55.67% bias 0.40% 0.36% 0.51% 0.34% 0.60% 0.39%
variance 6.26e-04 1.20e-03 2.68e-03 1.01e-03 2.82e-03 1.62e-03

σn = 1.6, SNR = 144.75, Dod = 52.09% bias 0.13% 0.35% 0.34% 0.02% 0.05% 0.05%
variance 8.76e-04 1.37e-03 1.69e-03 1.80e-03 1.21e-03 1.49e-03

σn = 1.8, SNR = 108.17, Dod = 52.69% bias 0.04% 0.23% 0.47% 0.46% 0.10% 0.03%
variance 2.83e-03 2.52e-03 1.19e-03 1.41e-03 1.18e-03 1.24e-03

σn = 2.2, SNR = 141.78, Dod = 46.96% bias 0.75% 0.42% 0.11% 0.16% 0.39% 0.02%
variance 1.63e-03 2.78e-03 3.26e-03 1.75e-03 2.19e-03 3.13e-03

σn = 2.4, SNR = 98.03, Dod = 45.52% bias 0.25% 0.25% 0.42% 0.15% 0.56% 0.42%
variance 2.07e-03 2.97e-03 3.17e-03 3.84e-03 2.26e-03 1.92e-03

σn = 2.6, SNR = 65.53, Dod = 51.07% bias 0.70% 0.36% 0.15% 0.23% 0.13% 0.74%
variance 3.49e-03 2.38e-03 4.73e-03 1.81e-03 3.79e-03 2.58e-03
σn = 2.8, SNR = 70.23, Dod = 42.81% bias 1.02% 0.24% 0.13% 0.74% 0.06% 0.40%
3.69e-03 2.30e-03 4.75e-03 4.72e-03 5.06e-03
variance 2.40e-03
IG. 3. This figure shows the magnitude spectra of sample A (top) and
ple B (bottom).
was obtained (10, 9), while, from the known quantities of the
added substances and using the same above-cited equation,
a �CD3OD(%) = (−33.4 ± 0.2)% difference was expected. The
same two spectra (A, B) were utilized to obtain the percent dif-
ference �CD3OD(%) of CD3OD relative to THR by using the
SuTdNAl. In particular, spectra were normalized with the algo-
rithm and a normalization constant R = 1.89 was found. After
normalization, the �CD3OD(%) of CD3OD relative to THR be-
tween the spectrum of sample A, normalized with respect to
the spectrum of sample B, was obtained directly by compar-
ing the areas of the two spectral CD3OD residual peaks. The
value found for �CD3OD(%) was �CD3OD(%) = (−33.0 ± 1.4)%.

It is interesting to observe that using the MiRaNAl results
in �CD3OD(%) = (−32.5 ± 1.6)% (10). As can be seen, all
three methods, the traditional method, the SuTdNAl and the
MiRaNAl, yielded percent difference results which were con-
sistent with the expected ones. However, the SuTdNAl and the
MiRaNAl allowed good results to be obtained without the use
of any standard and without quantifying all the spectral lines,
but rather by comparing the signals of interest in the normalized
spectra.

TABLE 4
Results Obtained Using a Standard

Sample THR (µmol/ml) CD3DO (µmol/ml)
A 38.7 ± 3.6 41.9 ± 3.9
B 20.2 ± 2.5 36.1 ± 4.6
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2.2.5. Simulated in Vitro Cell Spectra

For this section an in vitro measurement of a cell spectrum
was first acquired, followed by a quantitation with VARPRO
(12). Next, the quantified parameters of the 58 components are
used to reconstruct a first signal s1 using a Lorentzian lineshape
model. A second signal s2 is composed of 58 components as
well. The latter components are constructed as follows. A first
set of 32 components is constructed using exactly the same pa-
rameters as the corresponding components of s1 with the excep-
tion that the amplitudes are scaled by a factor R = 2 (these are
the intensities that do change proportionally). A second set of
21 components is constructed using exactly the same parame-
ters as the corresponding components of s1 with the exception
that the amplitudes differ randomly from their counterparts in
s1 (these are the intensities that do not change proportionally).
A third set of components have amplitudes, dampings, and fre-
quencies that differ randomly from their counterparts in s1. The
noiseless signals s1 (thick line) and s2 divided by R = 2 (thin line)
are shown in Fig. 4. At several noise levels Monte Carlo sim-
ulations involving the SuTdNAl are performed. For each noise
level, 30 independent Gaussian noise realizations with standard
deviation σn are constructed for signal s1 and s2. As mentioned
before the normalization factor R = 2. To get an idea of the dif-
ferent noise levels, Fig. 5 shows 4 instances of the real part of
the spectra of the noisy signal s1 with noise levels σn = 190, 285,
380, and 570 (from bottom to top).

The results are summarized in Table 5. Note that Table 5 ac-
tually contains the results for (S1, S2, S3) = (58, 58, 53) and for
(S1, S2, S3) = (100, 100, 100). The first triplet corresponds to the
FIG. 4. This figure shows the real part of the spectra of s1 (thick line) and
of s2 divided by R = 2 (thin line).
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FIG. 5. This figure shows the real part of the spectrum of s1 with additive
noise of standard deviation σn = 190, 285, 380, 570 (from bottom to top).

correct model orders since the signal contains 53 common signal
poles (of which only 32 have proportionally changing ampli-
tudes). The second triplet corresponds to a large overestimation
of the model orders. This case is included since it is often hard to
obtain exact model order estimates starting from the noisy data.
However, using prior knowledge and/or the SVD spectrum of
the data matrices it is always possible to obtain a conservative

TABLE 5
Results for Simulated Cell Spectra (Exact Model Orders are

S1 = 58, S2 = 58, Sc = 53)

(S1, S2, Sc)= (58, 58, 53) (100, 100, 100)

σn = 190, SNR = 156.83, bias 1.06% 0.95%
Dod = 49.44% variance 8.56e-04 2.78e-02

σn = 285, SNR = 104.66, bias 0.73% 1.76%
Dod = 47.78% variance 2.36e-03 6.53e-02

σn = 380, SNR = 78.08, bias 0.97% 3.7%
Dod = 46.15% variance 4.28e-03 9.08e-02
σn = 570, SNR = 52.69, bias 4.02% 11.39%
Dod = 44.18% variance 3.04e-02 2.08e-01
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upperbound of the model orders. The second triplet corresponds
to such a conservative upper bound. It also illustrates a rule of
thumb that can be used in case the model orders S1, S2, and Sc are
difficult to determine: simply set them equal to one and the same
overestimated value. The SuTdNAl then determines many com-
mon signal poles and no uncommon signal poles, yielding many
poles that will model the noise. However, these “spurious” poles
do not decrease the performance of the SuTdNAl too much since
their amplitudes will in general not vary proportionally and thus
they will not influence the result of the function “findfactor” (see
the outline of the SuTdNAl, line 7). They do play a role in the
function “common sp” (see the outline of the SuTdNAl, lines 5
and 6) since they influence the amplitudes of the “true” signal
poles, but as will be illustrated below, this influence remains
small at normal noise levels.

It is clear that for noise levels that are typical for in vitro
measurements (i.e., σn = 190) the SuTdNAl performs well both
for the correct model orders and the overestimated model orders.
When the noise standard deviation is doubled, the SuTdNAl still
performs well for the correct model orders while the accuracy
starts decreasing for the overestimated model orders. Only when
the noise is tripled also the accuracy of SuTdNAl applied with
the correct model orders starts decreasing.

3. CONCLUSION

In this paper a new subspace-based time-domain normaliza-
tion algorithm, the SuTdNAl, is presented. It is shown that the
SuTdNAl has a statistical performance similar to that of a previ-
ously presented normalization method: the MiRaNAl. However,
the newly presented method is not iterative and thus is compu-
tationally less intensive. Furthermore, no initial guess of the
normalization factor is required.

APPENDIX A

Determination of Common Signal Poles

In this appendix it is shown how the Sc common signal poles
can be extracted from the column space of Hc, i.e., the common
column space of H1 and H2, when both H1 and H2 contain
respectively the noiseless signal x1 (see Eq. [3]) and x2 (see
Eq. [4]).

If z(1), z(2), . . . , z(Sc) represent the common signal poles, it
follows that

R(Hc) =R(O), O ∈ C
L×Sc

with

O =




1 1 . . . 1
z(1) z(2) . . . z(Sc)

. . . .


 [9]
 .. .. .. ..

z(1)L−1 z(2)L−1 . . . z(Sc)L−1
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and thus

∃B ∈ R
Sc×(2M−S1−S2+Sc) such that Hc = O B. [10]

Furthermore let

Hc = U SV H [11]

be the truncated SVD of Hc, with U ∈ C
L×Sc , S ∈ C

Sc×Sc , V ∈
C

Sc×(2M−S1−S2+Sc). It then follows from Eq. [10] and Eq. [11]
that

∃� ∈ C
Sc×Sc : U = O� and SV H = �−1 B, [12]

where � is a nonsingular matrix. From Eq. [9] it is clear that the
column space of Hc is shift-invariant, i.e.,

O
¯

Z = Ō, [13]

where O
¯

is the matrix O with its bottom row deleted, Ō is the
matrix O with its top row deleted and Z is a diagonal matrix with
z(1), z(2), . . . , z(Sc) on its diagonal. From Eq. [12] and Eq. [13]
it then follows that

U
¯

W = Ū , [14]

where W ≡ �−1 Z� ∈ C
Sc×Sc , U

¯
is the matrix U with its bot-

tom row deleted and Ū is the matrix U with its top row deleted.
Since by the definition of W , Z and W are related by a sim-
ilarity transformation, the eigenvalues of Z and W are equal
and thus the common signal poles of the noiseless signals x1

and x2 can be determined from the left singular vectors cor-
responding to the Sc largest singular values of Hc by solving
[14] followed by the determination of the eigenvalues of the
solution.

APPENDIX B

Determination of Uncommon Signal Poles

In this appendix it is shown how—after having determined
the common signal poles of the noiseless signals x1 and x2—the
“uncommon” (i.e., the signal poles contained in x1 that are
different from the common signal poles) signal poles of x1 (and
in a similar way those of x2) can be determined.

Assume that the signal poles of x1 are ordered in such a
way that z(i), i = 1, . . . , Sc, are the Sc common signal poles.
Equation [5] can be written as

H1 = [O ′
1 O ′′

1 ]

[
D′

1 0

0 D′′

]
[C ′

1 C ′′
1 ]T = O ′

1 D′
1C ′T

1 + O ′′
1 D′′

1 C ′′T
1 ,
1

[15]
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where O ′
1 ∈ C

L×Sc , O ′′
1 ∈ C

L×(S1−Sc), D′
1 ∈ C

Sc×Sc , D′′
1 ∈

C
(S1−Sc)×(S1−Sc), C ′

1 ∈ C
M×Sc , C ′′

1 ∈ C
M×(S1−Sc). Let the QR fac-

torization of C ′
1 be represented as

C ′
1 = [Q1 Q2][RT 0]T ,

with Q1 ∈ C
M×Sc , Q2 ∈ C

M×(M−Sc), R ∈ C
Sc×Sc . Therefore it

follows that

C ′T
1 Q∗

2 = RT QT
1 Q∗

2 = RT
(
Q H

1 Q2
)∗ = 0,

where ( )∗ stands for the complex conjugate. It is thus clear that

H1 Q∗
2 = O ′′

1 D′′
1 C ′′T

1 Q∗
2. [16]

From Eq. [16] it is clear that the column space of H1 Q∗
2 is

shift-invariant meaning that

O ′′
1 Z ′′ = O ′′

1 , [17]

where O ′′
1 is the matrix O ′′

1 with its bottom row deleted, O ′′
1 is the

matrix O ′′
1 with its top row deleted and Z ′′ is a diagonal matrix

with z1(i), i = Sc + 1, . . . , S1, i.e., the uncommon signal poles,
on its diagonal. Let

H1 Q∗
2 = U SV H [18]

be the truncated SVD of H1 Q∗
2, with U ∈ C

L×(S1−Sc), S ∈
R

(S1−Sc)×(S1−Sc) and V ∈ C
(M−Sc)×(S1−Sc). From Eq. [16] and

Eq. [18] it follows that

∃� : U = O ′′
1 � and SV H = �−1 D′′

1 C ′′T
1 Q∗

2 [19]

with � ∈ C
(S1−Sc)×(S1−Sc) a regular matrix. Combining Eq. [17]

and Eq. [19] yields

U
¯

W ′′ = Ū , [20]

where W ′′ ≡ �−1 Z ′′� ∈ C
(S1−Sc)×(S1−Sc), U

¯
is the matrix U with

its bottom row deleted, and Ū is the matrix U with its top row
deleted. Since by the definition of W ′′, Z ′′ and W ′′ are related
by a similarity transformation, the eigenvalues of Z ′′ and W ′′

are equal and thus the uncommon signal poles of the noiseless
signals x1 can be determined from the left singular vectors cor-
responding to the S1 − Sc largest singular values of H1 Q∗

2 by

solving Eq. [20] followed by the determination of the eigenval-
ues of the solution.
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